Skip to content

vllm.config.utils

Utility functions for vLLM config dataclasses.

ConfigT module-attribute

ConfigT = TypeVar('ConfigT', bound=ConfigType)

ConfigType module-attribute

ConfigType = type[DataclassInstance]

logger module-attribute

logger = init_logger(__name__)

Range dataclass

A range of numbers. Inclusive of start, inclusive of end.

Source code in vllm/config/utils.py
@dataclass
class Range:
    """
    A range of numbers.
    Inclusive of start, inclusive of end.
    """

    start: int
    end: int

    def is_single_size(self) -> bool:
        return self.start == self.end

    def __contains__(self, size: int) -> bool:
        # Inclusive of start, inclusive of end
        return self.start <= size <= self.end

    def __eq__(self, other: object) -> bool:
        if not isinstance(other, Range):
            return False
        return self.start == other.start and self.end == other.end

    def __hash__(self) -> int:
        return hash((self.start, self.end))

    def __str__(self) -> str:
        return f"({self.start}, {self.end})"

    def __repr__(self) -> str:
        return self.__str__()

end instance-attribute

end: int

start instance-attribute

start: int

__contains__

__contains__(size: int) -> bool
Source code in vllm/config/utils.py
def __contains__(self, size: int) -> bool:
    # Inclusive of start, inclusive of end
    return self.start <= size <= self.end

__eq__

__eq__(other: object) -> bool
Source code in vllm/config/utils.py
def __eq__(self, other: object) -> bool:
    if not isinstance(other, Range):
        return False
    return self.start == other.start and self.end == other.end

__hash__

__hash__() -> int
Source code in vllm/config/utils.py
def __hash__(self) -> int:
    return hash((self.start, self.end))

__init__

__init__(start: int, end: int) -> None

__repr__

__repr__() -> str
Source code in vllm/config/utils.py
def __repr__(self) -> str:
    return self.__str__()

__str__

__str__() -> str
Source code in vllm/config/utils.py
def __str__(self) -> str:
    return f"({self.start}, {self.end})"

is_single_size

is_single_size() -> bool
Source code in vllm/config/utils.py
def is_single_size(self) -> bool:
    return self.start == self.end

SupportsHash

Bases: Protocol

Source code in vllm/config/utils.py
@runtime_checkable
class SupportsHash(Protocol):
    def compute_hash(self) -> str: ...

compute_hash

compute_hash() -> str
Source code in vllm/config/utils.py
def compute_hash(self) -> str: ...

SupportsMetricsInfo

Bases: Protocol

Source code in vllm/config/utils.py
class SupportsMetricsInfo(Protocol):
    def metrics_info(self) -> dict[str, str]: ...

metrics_info

metrics_info() -> dict[str, str]
Source code in vllm/config/utils.py
def metrics_info(self) -> dict[str, str]: ...

assert_hashable

assert_hashable(text: str) -> bool
Source code in vllm/config/utils.py
def assert_hashable(text: str) -> bool:
    if not contains_object_print(text):
        return True
    raise AssertionError(
        f"vLLM tried to hash some configs that may have Python objects ids "
        f"in them. This is a bug, please file an issue. "
        f"Text being hashed: {text}"
    )

config

config(cls: ConfigT) -> ConfigT

A decorator that ensures all fields in a dataclass have default values and that each field has a docstring.

If a ConfigT is used as a CLI argument itself, the type keyword argument provided by get_kwargs will be pydantic.TypeAdapter(ConfigT).validate_json(cli_arg) which treats the cli_arg as a JSON string which gets validated by pydantic.

Config validation is performed by the tools/pre_commit/validate_config.py script, which is invoked during the pre-commit checks.

Source code in vllm/config/utils.py
def config(cls: ConfigT) -> ConfigT:
    """
    A decorator that ensures all fields in a dataclass have default values
    and that each field has a docstring.

    If a `ConfigT` is used as a CLI argument itself, the `type` keyword argument
    provided by `get_kwargs` will be
    `pydantic.TypeAdapter(ConfigT).validate_json(cli_arg)` which treats the
    `cli_arg` as a JSON string which gets validated by `pydantic`.

    Config validation is performed by the tools/pre_commit/validate_config.py
    script, which is invoked during the pre-commit checks.
    """
    return cls

contains_object_print

contains_object_print(text: str) -> bool

Check if the text looks like a printed Python object, e.g. contains any substring matching the pattern: "at 0xFFFFFFF>" We match against 0x followed by 2-16 hex chars (there's a max of 16 on a 64-bit system).

Parameters:

Name Type Description Default
text str

The text to check

required

Returns:

Name Type Description
result bool

True if a match is found, False otherwise.

Source code in vllm/config/utils.py
def contains_object_print(text: str) -> bool:
    """
    Check if the text looks like a printed Python object, e.g.
    contains any substring matching the pattern: "at 0xFFFFFFF>"
    We match against 0x followed by 2-16 hex chars (there's
    a max of 16 on a 64-bit system).

    Args:
        text (str): The text to check

    Returns:
        result (bool): `True` if a match is found, `False` otherwise.
    """
    pattern = r"at 0x[a-fA-F0-9]{2,16}>"
    match = re.search(pattern, text)
    return match is not None

get_attr_docs

get_attr_docs(cls: type[Any]) -> dict[str, str]

Get any docstrings placed after attribute assignments in a class body.

https://davidism.com/mit-license/

Source code in vllm/config/utils.py
def get_attr_docs(cls: type[Any]) -> dict[str, str]:
    """
    Get any docstrings placed after attribute assignments in a class body.

    https://davidism.com/mit-license/
    """

    cls_node = ast.parse(textwrap.dedent(inspect.getsource(cls))).body[0]

    if not isinstance(cls_node, ast.ClassDef):
        raise TypeError("Given object was not a class.")

    out = {}

    # Consider each pair of nodes.
    for a, b in pairwise(cls_node.body):
        # Must be an assignment then a constant string.
        if (
            not isinstance(a, (ast.Assign, ast.AnnAssign))
            or not isinstance(b, ast.Expr)
            or not isinstance(b.value, ast.Constant)
            or not isinstance(b.value.value, str)
        ):
            continue

        doc = inspect.cleandoc(b.value.value)

        # An assignment can have multiple targets (a = b = v), but an
        # annotated assignment only has one target.
        targets = a.targets if isinstance(a, ast.Assign) else [a.target]

        for target in targets:
            # Must be assigning to a plain name.
            if not isinstance(target, ast.Name):
                continue

            out[target.id] = doc

    return out

get_field

get_field(cls: ConfigType, name: str) -> Field

Get the default factory field of a dataclass by name. Used for getting default factory fields in EngineArgs.

Source code in vllm/config/utils.py
def get_field(cls: ConfigType, name: str) -> Field:
    """Get the default factory field of a dataclass by name. Used for getting
    default factory fields in `EngineArgs`."""
    if not is_dataclass(cls):
        raise TypeError("The given class is not a dataclass.")
    cls_fields = {f.name: f for f in fields(cls)}
    if name not in cls_fields:
        raise ValueError(f"Field '{name}' not found in {cls.__name__}.")
    named_field: Field = cls_fields[name]
    if (default_factory := named_field.default_factory) is not MISSING:
        return field(default_factory=default_factory)
    if (default := named_field.default) is not MISSING:
        if isinstance(default, FieldInfo):
            # Handle pydantic.Field defaults
            if default.default_factory is not None:
                return field(default_factory=default.default_factory)
            else:
                default = default.default
        return field(default=default)

    raise ValueError(
        f"{cls.__name__}.{name} must have a default value or default factory."
    )

get_hash_factors

get_hash_factors(
    config: ConfigT, ignored_factors: set[str]
) -> dict[str, object]

Gets the factors used for hashing a config class. - Includes all dataclass fields not in ignored_factors. - Errors on non-normalizable values.

Source code in vllm/config/utils.py
def get_hash_factors(config: ConfigT, ignored_factors: set[str]) -> dict[str, object]:
    """Gets the factors used for hashing a config class.
    - Includes all dataclass fields not in `ignored_factors`.
    - Errors on non-normalizable values.
    """
    factors: dict[str, object] = {}
    for dc_field in fields(config):
        factor = dc_field.name
        if factor in ignored_factors:
            continue
        value = getattr(config, factor, None)
        try:
            factors[factor] = normalize_value(value)
        except TypeError as e:
            raise TypeError(
                f"get_hash_factors: unsupported type for key '{factor}' "
                f"({type(value).__name__})"
            ) from e
    return factors

getattr_iter

getattr_iter(
    object: object,
    names: Iterable[str],
    default: Any,
    warn: bool = False,
) -> Any

A helper function that retrieves an attribute from an object which may have multiple possible names. This is useful when fetching attributes from arbitrary transformers.PretrainedConfig instances.

In the case where the first name in names is the preferred name, and any other names are deprecated aliases, setting warn=True will log a warning when a deprecated name is used.

Source code in vllm/config/utils.py
def getattr_iter(
    object: object, names: Iterable[str], default: Any, warn: bool = False
) -> Any:
    """
    A helper function that retrieves an attribute from an object which may
    have multiple possible names. This is useful when fetching attributes from
    arbitrary `transformers.PretrainedConfig` instances.

    In the case where the first name in `names` is the preferred name, and
    any other names are deprecated aliases, setting `warn=True` will log a
    warning when a deprecated name is used.
    """
    for i, name in enumerate(names):
        if hasattr(object, name):
            if warn and i > 0:
                logger.warning_once(
                    "%s contains a deprecated attribute name '%s'. "
                    "Please use the preferred attribute name '%s' instead.",
                    type(object).__name__,
                    name,
                    names[0],
                )
            return getattr(object, name)
    return default

handle_deprecated

handle_deprecated(
    config: ConfigT,
    old_name: str,
    new_name_or_names: str | list[str],
    removal_version: str,
) -> None
Source code in vllm/config/utils.py
def handle_deprecated(
    config: ConfigT,
    old_name: str,
    new_name_or_names: str | list[str],
    removal_version: str,
) -> None:
    old_val = getattr(config, old_name)
    if old_val is None:
        return

    if isinstance(new_name_or_names, str):
        new_names = [new_name_or_names]
    else:
        new_names = new_name_or_names

    msg = (
        f"{old_name} is deprecated and will be removed in {removal_version}. "
        f"Use {', '.join(new_names)} instead."
    )
    logger.warning(msg)

    for new_name in new_names:
        setattr(config, new_name, old_val)

hash_factors

hash_factors(items: dict[str, object]) -> str

Return a SHA-256 hex digest of the canonical items structure.

Source code in vllm/config/utils.py
def hash_factors(items: dict[str, object]) -> str:
    """Return a SHA-256 hex digest of the canonical items structure."""
    return hashlib.sha256(json.dumps(items, sort_keys=True).encode()).hexdigest()

is_init_field

is_init_field(cls: ConfigType, name: str) -> bool
Source code in vllm/config/utils.py
def is_init_field(cls: ConfigType, name: str) -> bool:
    return next(f for f in fields(cls) if f.name == name).init

normalize_value

normalize_value(x)

Return a stable, JSON-serializable canonical form for hashing. Order: primitives, special types (Enum, callable, torch.dtype, Path), then generic containers (Mapping/Set/Sequence) with recursion.

Source code in vllm/config/utils.py
def normalize_value(x):
    """Return a stable, JSON-serializable canonical form for hashing.
    Order: primitives, special types (Enum, callable, torch.dtype, Path), then
    generic containers (Mapping/Set/Sequence) with recursion.
    """
    # Fast path
    if x is None or isinstance(x, (bool, int, float, str)):
        return x

    # Enums: tag with FQN to avoid primitive collisions.
    # Ex: Enum(1) vs int(1) -> ("module.QualName", value).
    if isinstance(x, enum.Enum):
        enum_type = f"{x.__class__.__module__}.{x.__class__.__qualname__}"
        return (enum_type, normalize_value(x.value))

    # Classes (types) are accepted and canonicalized by their fully-qualified
    # name (module.qualname) for a stable identifier.
    # Instances are only accepted if they expose uuid(); otherwise they are
    # rejected to avoid under-hashing object state.

    # Callables: accept classes only; reject funcs/lambdas/methods.
    # Used by LogitsProcessor types and ModelConfig.hf_overrides.
    if isinstance(x, type):
        module = getattr(x, "__module__", "")
        qual = getattr(x, "__qualname__", getattr(x, "__name__", ""))
        return ".".join([p for p in (module, qual) if p]) or repr(x)

    # Prefer stable uuid identifiers for objects that provide them, even if
    # they are callable instances (e.g., InductorPass wrappers).
    if hasattr(x, "uuid") and callable(getattr(x, "uuid", None)):
        return x.uuid()

    if callable(x):
        raise TypeError("normalize_value: function or callable instance unsupported")

    # Torch dtype: stringify (torch.float64 -> "torch.float64").
    # We rely on the string form here; dtype-bearing fields that need additional
    # disambiguation should encode that at the config layer.
    if isinstance(x, torch.dtype):
        return str(x)

    # Bytes
    if isinstance(x, (bytes, bytearray)):
        return x.hex()

    # Paths (canonicalize)
    if isinstance(x, pathlib.Path):
        try:
            return str(x.expanduser().resolve())
        except Exception:
            return str(x)

    # Dataclasses: represent as (FQN, sorted(field,value) tuple) for stability.
    if is_dataclass(x):
        type_fqn = f"{x.__class__.__module__}.{x.__class__.__qualname__}"
        items = tuple(
            (f.name, normalize_value(getattr(x, f.name)))
            for f in sorted(fields(x), key=lambda f: f.name)
        )
        return (type_fqn, items)

    # Containers (generic)
    if isinstance(x, Mapping):
        return tuple(sorted((str(k), normalize_value(v)) for k, v in x.items()))
    if isinstance(x, Set):
        return tuple(sorted(repr(normalize_value(v)) for v in x))
    if isinstance(x, Sequence) and not isinstance(x, (str, bytes, bytearray)):
        return tuple(normalize_value(v) for v in x)

    # PretrainedConfig
    if hasattr(x, "to_json_string") and callable(x.to_json_string):
        return x.to_json_string()

    # Unsupported type: e.g., modules, generators, open files, or objects
    # without a stable JSON/UUID representation. Hard-error to avoid
    # under-hashing.
    # If you hit this, either reshape your config to use supported primitives
    # and containers, or extend normalize_value to provide a stable encoding
    # (e.g., via uuid() or to_json_string()) for this type.
    raise TypeError(
        f"normalize_value: unsupported type '{type(x).__name__}'. "
        "Ensure config values use supported primitives/containers or add a "
        "stable representation for this type."
    )

update_config

update_config(
    config: ConfigT, overrides: dict[str, Any]
) -> ConfigT
Source code in vllm/config/utils.py
def update_config(config: ConfigT, overrides: dict[str, Any]) -> ConfigT:
    processed_overrides = {}
    for field_name, value in overrides.items():
        assert hasattr(config, field_name), (
            f"{type(config)} has no field `{field_name}`"
        )
        current_value = getattr(config, field_name)
        if is_dataclass(current_value) and not is_dataclass(value):
            assert isinstance(value, dict), (
                f"Overrides to {type(config)}.{field_name} must be a dict"
                f"  or {type(current_value)}, but got {type(value)}"
            )
            value = update_config(
                current_value,  # type: ignore[type-var]
                value,
            )
        processed_overrides[field_name] = value
    return replace(config, **processed_overrides)