vllm.tokenizers.registry ¶
TokenizerRegistry module-attribute ¶
TokenizerRegistry = _TokenizerRegistry(
{
mode: (f"vllm.tokenizers.{mod_relname}", cls_name)
for mode, (mod_relname, cls_name) in (items())
}
)
_VLLM_TOKENIZERS module-attribute ¶
_VLLM_TOKENIZERS = {
"deepseekv32": ("deepseekv32", "DeepseekV32Tokenizer"),
"hf": ("hf", "CachedHfTokenizer"),
"mistral": ("mistral", "MistralTokenizer"),
}
cached_resolve_tokenizer_args module-attribute ¶
cached_resolve_tokenizer_args = lru_cache(
resolve_tokenizer_args
)
_TokenizerRegistry dataclass ¶
Source code in vllm/tokenizers/registry.py
tokenizers class-attribute instance-attribute ¶
load_tokenizer ¶
load_tokenizer(
tokenizer_mode: str, *args, **kwargs
) -> TokenizerLike
load_tokenizer_cls ¶
load_tokenizer_cls(
tokenizer_mode: str,
) -> type[TokenizerLike]
Source code in vllm/tokenizers/registry.py
register ¶
Source code in vllm/tokenizers/registry.py
cached_tokenizer_from_config ¶
cached_tokenizer_from_config(
model_config: ModelConfig, **kwargs
)
Source code in vllm/tokenizers/registry.py
get_tokenizer ¶
get_tokenizer(
tokenizer_name: str | Path,
*args,
tokenizer_cls: type[_T] = TokenizerLike,
trust_remote_code: bool = False,
revision: str | None = None,
download_dir: str | None = None,
**kwargs,
) -> _T
Gets a tokenizer for the given model name via HuggingFace or ModelScope.
Source code in vllm/tokenizers/registry.py
init_tokenizer_from_config ¶
init_tokenizer_from_config(model_config: ModelConfig)
resolve_tokenizer_args ¶
resolve_tokenizer_args(
tokenizer_name: str | Path,
*args,
runner_type: RunnerType = "generate",
tokenizer_mode: str = "auto",
**kwargs,
)
Source code in vllm/tokenizers/registry.py
tokenizer_args_from_config ¶
tokenizer_args_from_config(config: ModelConfig, **kwargs)